On the Optimal Stopping Problem for One–dimensional Diffusions

نویسندگان

  • SAVAS DAYANIK
  • IOANNIS KARATZAS
چکیده

A new characterization of excessive functions for arbitrary one–dimensional regular diffusion processes is provided, using the notion of concavity. It is shown that excessivity is equivalent to concavity in some suitable generalized sense. This permits a characterization of the value function of the optimal stopping problem as “the smallest nonnegative concave majorant of the reward function” and allows us to generalize results of Dynkin and Yushkevich for standard Brownian motion. Moreover, we show how to reduce the discounted optimal stopping problems for an arbitrary diffusion process to an undiscounted optimal stopping problem for standard Brownian motion. The concavity of the value functions also leads to conclusions about their smoothness, thanks to the properties of concave functions. One is thus led to a new perspective and new facts about the principle of smooth–fit in the context of optimal stopping. The results are illustrated in detail on a number of non–trivial, concrete optimal stopping problems, both old and new. AMS Subject Classification: Primary 60G40; Secondary 60J60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of optimal stopping problems for diffusions with discontinuous coefficients

In this paper we introduce a modification of the free boundary problem related to optimal stopping problems for diffusion processes. This modification allows to apply this PDE method also in cases where the usual regularity assumptions on the coefficients and on the gain function are not satisfied. We apply this method to the optimal stopping of integral functionals with exponential discount of...

متن کامل

Construction of the Value Function and Optimal Rules in Optimal Stopping of One-dimensional Diffusions

A new approach to the solution of optimal stopping problems for one-dimensional diffusions is developed. It arises by imbedding the stochastic problem in a linear programming problem over a space of measures. Optimizing over a smaller class of stopping rules provides a lower bound on the value of the original problem. Then the weak duality of a restricted form of the dual linear program provide...

متن کامل

Contributions to the Theory of Optimal Stopping for One – Dimensional Diffusions

Contributions to the Theory of Optimal Stopping for One–Dimensional Diffusions Savas Dayanik Advisor: Ioannis Karatzas We give a new characterization of excessive functions with respect to arbitrary one–dimensional regular diffusion processes, using the notion of concavity. We show that excessive functions are essentially concave functions, in some generalized sense, and vice–versa. This, in tu...

متن کامل

On the Optimal Switching Problem for One-Dimensional Diffusions

We characterize the optimal switching problem as coupled optimal stoping problems. We then use the optimal stopping theory to provide a solution. As opposed to the methods using quasi-variational inequalities and verification theorem we directly work with the value function.

متن کامل

Discounted optimal stopping for diffusions: free-boundary versus martingale approach

The free-boundary and the martingale approach are competitive methods of solving discounted optimal stopping problems for one-dimensional time-homogeneous regular diffusion processes on infinite time intervals. We provide a missing link showing the equivalence of these approaches for a problem, where the optimal stopping time is equal to the first exit time of the underlying process from a regi...

متن کامل

A Direct Method for Solving Optimal Switching Problems of One-Dimensional Diffusions

In this paper, we propose a direct solution method for optimal switching problems of one-dimensional diffusions. This method is free from conjectures about the form of the value function and switching strategies, or does not require the proof of optimality through quasi-variational inequalities. The direct method uses a general theory of optimal stopping problems for one-dimensional diffusions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003